Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[diaquatetra- μ-selenocyanatocadmium(II)dipotassium(I)]

Thorben Reinert, Jan Boeckmann,* Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-EythStrasse 2, 24098 Kiel, Germany
Correspondence e-mail: jboeckmann@ac.uni-kiel.de
Received 23 August 2010; accepted 30 August 2010
Key indicators: single-crystal X-ray study; $T=170 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.012 \AA$; R factor $=0.037 ; w R$ factor $=0.090 ;$ data-to-parameter ratio $=22.8$.

In the title compound, $\left[\mathrm{CdK}_{2}(\mathrm{NCSe})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the cadmium(II) cation is situated on a twofold rotation axis and is coordinated in a slightly distorted tetrahedral geometry by two symmetry-related $\mu-1,1,1,3$ and two-symmetry related $\mu-1,1,3,3$ bridging selenocyanate anions, all of which are Se bonded. These bridging selenocyanate anions are further coordinated to two symmetry-related potassium ions. Each of the potassium ions is coordinated by one terminally bonded water molecule and six selenocyanate anions, two of which are crystallographically independent. The asymmetric unit consists of one cadmium and one potassium cation, two bridging selenocyanate anions and one water molecule. The polymeric subunits are further connected via the selenocyanate anions into a three-dimensional coordination network. In this coordination network, intramolecular hydrogen bonds between neighbouring water molecules can be found.

Related literature

For general background to transition metal thio- and selenocyanates and N-donor ligands, see: Näther et al. (2007); Bhosekar et al. (2006); Wriedt \& Näther (2010); Wriedt et al. (2010a,b). For related structures, see: Shi et al. (2007); Couhorn \& Dronskowski (2004). For similar coordination modes in azido anions, see: El Fallah et al. (2008); Guo \& Mak (1998).

Experimental

Crystal data
$\left[\mathrm{CdK}_{2}\left(\mathrm{NCSe}^{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$V=1575.1(3) \AA^{3}$
$M_{r}=646.55$
$Z=4$
Monoclinic, $C 2 / c$
Mo $K \alpha$ radiation
$a=21.574$ (3) А
$\mu=11.15 \mathrm{~mm}^{-1}$
$b=4.4055$ (4) \AA
$T=170 \mathrm{~K}$
$c=17.9316(19) \AA$
$0.05 \times 0.04 \times 0.03 \mathrm{~mm}$
$\beta=112.454(13)^{\circ}$

4687 measured reflections
Data collection

Stoe IPDS-1 diffractometer	4687 measured reflections
Absorption correction: numerical	1800 independent reflections
$(X$-SHAPE and X-RED32;	1355 reflections with $I>2 \sigma(I)$
Stoe \& Cie, 2008)	$R_{\text {int }}=0.057$

$$
T_{\min }=0.588, T_{\max }=0.713
$$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037 \quad 79$ parameters
$w R\left(F^{2}\right)=0.090$
H -atom parameters constrained
$S=1.00$
$\Delta \rho_{\text {max }}=0.90 \mathrm{e}_{\AA^{-3}}$
1800 reflections

Table 1
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H2 $\cdots \mathrm{O}^{\mathrm{i}}$	0.85	1.92	$2.760(6)$	167
Symmetry code: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.				

Data collection: X-AREA (Stoe \& Cie, 2008); cell refinement: X $A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

We gratefully acknowledge financial support by the State of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Project 720/3-1).

[^0]
inorganic compounds

References

Bhosekar, G., Jess, I. \& Näther, C. (2006). Acta Cryst. E62, m1859-m1860. Couhorn, U. \& Dronskowski, R. (2004). Z. Anorg. Allg. Chem. 630, 427-433. El Fallah, M. S., Vicente, R., Tercero, J., Elpelt, C., Rentschler, E., Solans, X. \& Font-Bardia, M. (2008). Inorg. Chem. 47, 6322-6328.
Guo, G.-C. \& Mak, T. C. W. (1998). Angew. Chem. Int. Ed. 37, 3268-3270.
Näther, C., Bhosekar, G. \& Jess, I. (2007). Eur. J. Inorg. Chem. pp. 5353-5359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shi, W., Shafaei-Fallah, M., Zhang, L., Anson, C., Matern, E. \& Rothenberger, A. (2007). Chem. Eur. J. 13, 598-603.

Stoe \& Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Wriedt, M., Jess, I. \& Näther, C. (2010a). Acta Cryst. E66, m742.
Wriedt, M., Jess, I. \& Näther, C. (2010b). Acta Cryst. E66, m1014-m1015.
Wriedt, M. \& Näther, C. (2010). Chem. Commun. 46, 4707-4709.

supplementary materials

Acta Cryst. (2010). E66, i70-i71 [doi:10.1107/S1600536810034938]

Poly[diaquatetra- μ-selenocyanato-cadmium(II)dipotassium(I)]

T. Reinert, J. Boeckmann, I. Jess and C. Näther

Comment

In our ongoing investigations on the synthesis, structures and properties of transition metal thio- and selenocyanates and N-donor ligands (Näther, Bhosekar \& Jess (2007); Bhosekar et al. (2006); Wriedt \& Näther (2010); Wriedt, Jess \& Näther $(2010 a, b)$) we have reacted cadmium(II) dinitrate with potassium selenocyanate and pyrimidine in water in order to prepare cadmium selenocyanato coordination polymers with pyrimidine as co-ligand. In this reaction single crystals were obtained, which were identified as the title compound by single-crystal X-ray diffraction.

In the title compound of composition $\left[\mathrm{CdK}_{2}(\mathrm{NCSe})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ (Fig. 1) the cadmium cation is located on a twofold rotation axis and is coordinated to ten potassium cations via two $\mu-1,1,1,3$ bridging and two $\mu-1,1,3,3$ bridging selenocyanato anions. The cadmium cation is coordinated by Se atoms of four selenocyanato anions in a slightly distorted tetrahedral geometry. The Cd—Se distances range between 2.655 (7) \AA and 2.672 (8) \AA and the $\mathrm{Se}-\mathrm{Cd} — \mathrm{Se}$ angles range between 106.68 (21) ${ }^{\circ}$ and $116.96(17)^{\circ}$ (Tab. 1). The potassium cations are each heptacoordinated by three N -atoms of three $\mu-1,1,1,3$ bridging selenocyanato anions, two N -atoms of two $\mu-1,1,3,3$ bridging selenocyanato anions, one Se-atom of one $\mu-1,1,3,3$ bridging selenocyanato anion and one terminally bonded water molecule within an irregular geometry. The $\mathrm{K}-\mathrm{N}$ distances range between 2.805 (69) \AA and 3.083 (71) \AA, the K—O distance amounts to 2.763 (45) \AA and the K—Se distance is 3.694 (16) \AA. The angles around the K atoms range between $63.10(2)^{\circ}$ and 155.51 (19) ${ }^{\circ}$ (Tab. 1). The large $\mathrm{K} — \mathrm{Se}$ and $\mathrm{K}-\mathrm{K}$ distances are not unusual and similar values can be found in related structures (Shi et al., 2007; Couhorn \& Dronskowski, 2004). The Cd and K atoms are connected by the bridging selenocyanato anions into a three-dimensional coordination network (Fig. 2). It must be noted that the present bridging modes of the selenocyanato anions are observed for the first time in a coordination polymer and similar coordination modes can be found for azido anions (El Fallah et al., 2008; Guo \& Mak, 1998).

Experimental

$\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \times 4 \mathrm{H}_{2} \mathrm{O}$ was obtained from Merck, KNCSe and pyrimidine were obtained from Alfa Aesar. $1 \mathrm{mmol}(174 \mathrm{mg})$ $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \times 4 \mathrm{H}_{2} \mathrm{O}, 2 \mathrm{mmol}(288 \mathrm{mg}) \mathrm{KNCSe}, 4 \mathrm{mmol}(320 \mathrm{mg})$ pyrimidine and 3 ml acetonitrile were reacted in a closed snap-cap vial without stirring. After the mixture had been standing for several days in the dark at room temperature colourless block shaped single crystals of the title compound were obtained.

Refinement

The $\mathrm{O}-\mathrm{H}$ hydrogen atoms were located in difference map, set to idealized distances and refined isotropic using a riding model with $U_{\text {eq }}(\mathrm{H})=1.5^{*} U_{\text {eq }}(\mathrm{O})$.

supplementary materials

Figures

Fig. 1. : Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: i: $x, y+1, z$; ii: $-x+1 / 2,-y+3 / 2,-z+1$; iii: $-x+1,-y+1,-z+1$; iv: $-x+1,-y+2,-z+1 ; \mathrm{v}:-x+1, y,-z+3 / 2$; vi: $x, y-1, z$.

Fig. 2. : Crystal structure of the title compound with view along the crystallographic b-axis.

Poly[diaquatetra- μ-selenocyanato-cadmium(II)dipotassium(I)]

Crystal data

$\left[\mathrm{CdK}_{2}(\mathrm{NCSe})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=646.55$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=21.574$ (3) \AA
$b=4.4055$ (4) \AA
$c=17.9316(19) \AA$
$\beta=112.454$ (13) ${ }^{\circ}$
$V=1575.1(3) \AA^{3}$
$Z=4$
$F(000)=1176$
$D_{\mathrm{x}}=2.726 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4533 reflections
$\theta=2.5-27.5^{\circ}$
$\mu=11.15 \mathrm{~mm}^{-1}$
$T=170 \mathrm{~K}$
Block, colourless
$0.05 \times 0.04 \times 0.03 \mathrm{~mm}$

Data collection

Stoe IPDS-1
diffractometer
Radiation source: fine-focus sealed tube
graphite
φ Scans scans
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe \& Cie, 2008)
$T_{\text {min }}=0.588, T_{\text {max }}=0.713$
4687 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$

1800 independent reflections
1355 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-28 \rightarrow 26$
$k=-5 \rightarrow 4$
$l=-23 \rightarrow 23$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w R\left(F^{2}\right)=0.090$
$S=1.00$
1800 reflections
79 parameters
0 restraints
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.052 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.90$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.94 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.00083 (16)

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cd1	0.5000	$0.53865(16)$	0.7500	$0.02159(19)$
Se1	$0.39046(3)$	$0.19271(15)$	$0.71167(3)$	$0.02260(18)$
C1	$0.3440(3)$	$0.3582(16)$	$0.6125(4)$	$0.0257(13)$
N1	$0.3131(3)$	$0.4620(16)$	$0.5497(3)$	$0.0320(13)$
Se2	$0.49070(3)$	$0.85366(16)$	$0.61994(3)$	$0.02357(19)$
C2	$0.5606(4)$	$0.6741(17)$	$0.6015(4)$	$0.0293(15)$
N2	$0.6047(4)$	$0.5706(16)$	$0.5900(4)$	$0.0381(15)$
K1	$0.32739(8)$	$0.9210(4)$	$0.44900(8)$	$0.0291(3)$
O1	$0.2416(3)$	$0.8171(13)$	$0.2915(3)$	$0.0375(12)$
H1	0.1999	0.8495	0.2786	0.056^{*}
H2	0.2463	0.6824	0.2602	0.056^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd 1	$0.0190(3)$	$0.0260(4)$	$0.0195(3)$	0.000	$0.0071(2)$	0.000
Se 1	$0.0206(3)$	$0.0229(3)$	$0.0237(3)$	$-0.0014(2)$	$0.0078(2)$	$0.0018(2)$
C 1	$0.022(3)$	$0.026(4)$	$0.033(3)$	$-0.006(3)$	$0.015(3)$	$-0.004(3)$
N 1	$0.028(3)$	$0.037(4)$	$0.028(3)$	$-0.003(3)$	$0.007(2)$	$0.002(3)$
Se 2	$0.0244(3)$	$0.0258(4)$	$0.0208(3)$	$0.0022(3)$	$0.0089(2)$	$0.0020(2)$
C 2	$0.038(4)$	$0.029(4)$	$0.022(3)$	$-0.004(3)$	$0.013(3)$	$-0.002(3)$
N 2	$0.047(4)$	$0.033(4)$	$0.048(3)$	$0.008(3)$	$0.033(3)$	$0.002(3)$
K 1	$0.0348(8)$	$0.0263(8)$	$0.0292(7)$	$0.0001(6)$	$0.0155(6)$	$-0.0005(6)$

O	$0.032(3)$	$0.042(3)$	$0.039(3)$	$-0.007(3)$	$0.015(2)$

Geometric parameters ($A,{ }^{\circ}$)

Cd1-Se2	2.6548 (7)	$\mathrm{Se} 2-\mathrm{C} 2$	1.841 (7)
Cd1-Se1	2.6720 (8)	C2-N2	1.143 (10)
Se1-C1	1.827 (7)	$\mathrm{N} 2-\mathrm{K} 1^{\text {iii }}$	2.847 (7)
C1-N1	1.161 (9)	$\mathrm{N} 2-\mathrm{K} 1^{\text {iv }}$	2.904 (7)
N1-K1	2.806 (6)	K1-O1	2.760 (5)
N1-K1 ${ }^{\text {i }}$	3.076 (7)	$\mathrm{O} 1-\mathrm{H} 1$	0.8501
N1—K1 ${ }^{\text {ii }}$	3.083 (7)	$\mathrm{O} 1-\mathrm{H} 2$	0.8500
$\mathrm{Se} 2-\mathrm{Cd} 1-\mathrm{Se}^{\text {v }}$	116.97 (4)	$\mathrm{N} 1^{\text {vi }}-\mathrm{K} 1-\mathrm{N} 1^{\mathrm{ii}}$	63.1 (2)
$\mathrm{Se} 2-\mathrm{Cd} 1-\mathrm{Se} 1$	108.03 (2)	O1-K1-Se2	152.89 (13)
$\mathrm{Se} 2^{\mathrm{v}}-\mathrm{Cd} 1-\mathrm{Se} 1$	106.66 (2)	N1-K1-Se2	73.29 (13)
$\mathrm{Se} 2-\mathrm{Cd} 1-\mathrm{Sel}^{\text {v }}$	106.66 (2)	N2 ${ }^{\text {iiii }}$-K1—Se2	74.08 (15)
Se^{2} - $\mathrm{Cd} 1-\mathrm{Se}^{\text {V }}$	108.03 (2)	$\mathrm{N} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{Se} 2$	81.55 (15)
$\mathrm{Se} 1-\mathrm{Cd} 1-\mathrm{Sel}^{\text {v }}$	110.45 (4)	N1 ${ }^{\text {vi }}-\mathrm{K} 1-\mathrm{Se} 2$	81.53 (12)
C1—Se1-Cd1	97.2 (2)	N1 ${ }^{\text {iii }}$-K1—Se2	129.50 (11)
N1-C1-Se1	178.5 (6)	O1-K1-K1 ${ }^{\text {vi }}$	99.55 (13)
C1-N1-K1	138.2 (5)	N1-K1-K1 ${ }^{\text {vi }}$	136.11 (14)
C1-N1-K1 ${ }^{\text {i }}$	96.6 (5)	$\mathrm{N} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{vi}}$	139.52 (14)
$\mathrm{K} 1-\mathrm{N} 1-\mathrm{K} 1^{\text {i }}$	96.89 (17)	$\mathrm{N} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{K} 1^{\text {vi }}$	39.54 (13)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{K} 1{ }^{\text {ii }}$	105.1 (5)	$\mathrm{N} 1^{\mathrm{vi}}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{vi}}$	39.22 (12)
$\mathrm{K} 1-\mathrm{N} 1-\mathrm{K} 1^{\text {ii }}$	103.6 (2)	N $1{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {vi }}$	80.38 (13)
$\mathrm{K} 1{ }^{\mathrm{i}}-\mathrm{N} 1-\mathrm{K} 1^{\text {ii }}$	116.9 (2)	Se2-K1-K1 ${ }^{\text {vi }}$	94.61 (3)
$\mathrm{C} 2-\mathrm{Se} 2-\mathrm{Cd} 1$	98.1 (2)	O1-K1-K1 ${ }^{\text {i }}$	80.45 (13)
C2-Se2-K1	118.2 (2)	$\mathrm{N} 1-\mathrm{K} 1-\mathrm{K} 1^{\text {i }}$	43.89 (14)
Cd1-Se2-K1	119.93 (3)	$\mathrm{N} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{i}}$	40.48 (14)
N2-C2-Se2	178.1 (7)	$\mathrm{N} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{i}}$	140.46 (13)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{K} 1^{\text {iii }}$	152.8 (6)	$\mathrm{N} 1^{\mathrm{vi}}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{i}}$	140.78 (12)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{K} 1^{\text {iv }}$	105.5 (6)	$\mathrm{N} 1^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{i}}$	99.62 (13)
$\mathrm{K} 1{ }^{\text {iii }}-\mathrm{N} 2-\mathrm{K} 1^{\text {iv }}$	99.98 (19)	Se2-K1-K1 ${ }^{\text {i }}$	85.39 (3)
O1-K1-N1	110.08 (18)	$\mathrm{K} 1^{\mathrm{vi}}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{i}}$	180.00 (9)
O1-K1-N2 $2^{\text {iii }}$	80.18 (19)	$\mathrm{O} 1-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	92.68 (12)
N1-K1-N2 $2^{\text {iii }}$	78.66 (19)	N1-K1-K1 ${ }^{\text {ii }}$	40.35 (13)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{N} 2{ }^{\text {iv }}$	94.85 (19)	$\mathrm{N} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{ii}}$	111.46 (15)
$\mathrm{N} 1-\mathrm{K} 1-\mathrm{N} 2{ }^{\text {iv }}$	154.22 (19)	$\mathrm{N} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	148.48 (14)
$\mathrm{N} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{N} 2^{\mathrm{iv}}$	99.98 (19)	$\mathrm{N} 1^{\mathrm{vi}}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{ii}}$	76.76 (12)
O1-K1-N1 ${ }^{\text {vi }}$	123.42 (18)	N1 ${ }^{\text {ii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	36.10 (12)
$\mathrm{N} 1-\mathrm{K} 1-\mathrm{N} 1^{\text {vi }}$	96.89 (17)	Se2-K1-K1 ${ }^{\text {ii }}$	104.44 (5)
$\mathrm{N} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{N} 1{ }^{\text {vi }}$	155.49 (19)	$\mathrm{K} 1^{\mathrm{vi}}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{ii}}$	108.99 (4)
$\mathrm{N} 2{ }^{\text {iv }}-\mathrm{K} 1-\mathrm{N} 1^{\text {vi }}$	73.55 (17)	$\mathrm{K} 1{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	71.01 (4)

sup-4

supplementary materials

O1-K1-N1 ${ }^{\text {ii }}$	75.99 (16)	$\mathrm{K} 1-\mathrm{O} 1-\mathrm{H} 1$	118.5
$\mathrm{N} 1-\mathrm{K} 1-\mathrm{N} 1^{\text {ii }}$	76.4 (2)	$\mathrm{K} 1-\mathrm{O} 1-\mathrm{H} 2$	126.1
$\mathrm{N} 2^{\mathrm{iii}}-\mathrm{K} 1-\mathrm{N} 1{ }^{\text {ii }}$	136.7 (2)	$\mathrm{H} 1-\mathrm{O} 1-\mathrm{H} 2$	108.6
$\mathrm{N} 2^{\text {iv }}-\mathrm{K} 1-\mathrm{N} 1^{\text {ii }}$	117.42 (19)		

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1 / 2,-y+3 / 2,-z+1$; (iii) $-x+1,-y+1,-z+1$; (iv) $-x+1,-y+2,-z+1$; (v) $-x+1, y,-z+3 / 2$; (vi) x, $y+1, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1—H2 $\cdots \mathrm{O} 1^{\text {vii }}$	0.85	1.92	$2.760(6)$	167
Symmetry codes: (vii) $-x+1 / 2, y-1 / 2,-z+1 / 2$.				

supplementary materials

Fig. 1

Fig. 2

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2330).

